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Introduction to Fluid Motion 

 

This chapter discusses the analysis of fluid in motion - fluid dynamics. It is useful to 

introduce some definitions about fluid motion. 

Mass flow rate (𝒎̇): is the mass per time taken to accumulate this mass, 𝑚̇ =
𝑑𝑚

𝑑𝑡
 

Volume flow rate-Discharge (Q), 𝑄 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑

𝑡𝑖𝑚𝑒
 

Uniform flow: If the flow velocity is the same magnitude and direction at every point in 

the fluid it is said to be uniform. 

Non-uniform: If at a given instant, the velocity is not the same at every point the flow is 

non-uniform.(In practice, by this definition, every fluid that flows near a solid boundary 

will be non-uniform – as the fluid at the boundary must take the speed of the boundary, 

usually zero. However if the size and shape of the of the cross-section of the stream of 

fluid is constant the flow is considered uniform.) 

Steady flow: A steady flow is one in which the conditions (velocity, pressure and cross-

section) may differ from point to point but DO NOT change with time. 

 Unsteady flow: If at any point in the fluid, the conditions change with time, the flow is 

described as unsteady. (In practice there is always slight variations in velocity and 

pressure, but if the average values are constant, the flow is considered steady. 

 

Combining the above we can classify any flow in to one of the following four 

types: 

1.Steady uniform flow. Conditions do not change with position in the stream or with time. 

An example is the flow of water in a pipe of constant diameter at constant velocity. 

2. Steady non-uniform flow. Conditions change from point to point in the stream but do 

not change with time. An example is flow in a tapering pipe with constant velocity at the 

inlet - velocity will change as you move along the length of the pipe toward the exit. 
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3. Unsteady uniform flow. At a given instant in time the conditions at every point are the 

same, but will change with time. An example is a pipe of constant diameter connected to 

a pump pumping at a constant rate which is then switched off. 

4. Unsteady non-uniform flow. Every condition of the flow may change from point to 

point and with time at every point. For example waves in a channel. 

 

Compressible and Incompressible Flow 

All fluids are compressible - even water - their density will change as pressure changes. 

Under steady conditions, and provided that the changes in pressure are small, it is usually 

possible to simplify analysis of the flow by assuming it is incompressible and has 

constant density. As you will appreciate, liquids are quite difficult to compress - so under 

most steady conditions they are treated as incompressible. In some unsteady conditions 

very high pressure differences can occur and it is necessary to take these into account- 

even for liquids. Gasses, on the contrary, are very easily compressed, it is essential in 

most cases to treat these as compressible, taking changes in pressure into account. 

 

Three Dimensional Flow 

Although in general all fluids flow three-dimensionally, with pressures and velocities and 

other flow properties varying in all directions, in many cases the greatest changes only 

occur in two directions or even only in one. In these cases changes in the other direction 

can be effectively ignored making analysis much more simple.  

Flow is one dimensional if the flow parameters (such as velocity, pressure, depth etc.) at 

a given instant in time only vary in the direction of flow and not across the cross-section. 

The flow may be unsteady, in this case the parameter vary in time but still not across the 

cross-section. An example of one-dimensional flow is the flow in a pipe. Note that since 

flow must be zero at the pipe wall - yet non-zero in the center – there is a difference of 

parameters across the cross-section. Should this be treated as two-dimensional flow? 

Possibly - but it is only necessary if very high accuracy is required. A correction factor is 

then usually applied. 

Ideal Flow: frictionless (μ = 0) and 

incompressible. 

Real Flow:  μ ≠ 0 
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Adiabatic flow: fluid flow in which no heat is transferred to or from the fluid 

Adiabatic + frictionless = isentropic 

Laminar Flow: fluid particles move along smooth path in laminas (or layers). Laminar 

flow is governed by Newton’s law of viscosity: 

Turbulent Flow: Fluid particles move in very irregular paths. 

 

Control Volume and Conservations Laws 

The control volume was "an imagined spatial volume having certain characteristics and 

introduced for purposes of analysis" of fluid mechanics. The concept was later expanded 

to aid in thermodynamic analysis. 
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A control volume is defined as a region of three dimensional space selected for 

the purposes of analysis and on which specific fundamental physical laws can be applied. 

Around this volume of space is a control surface. That surface is an imaginary, infinitely 

thin 2 dimensional surface. The purpose of the control surface is to aid in identifying 

mass and energy which act on the control volume.  

When applying control volumes to fluid dynamics, flow is allowed to enter or 

leave the volume, resulting in changes to momentum, kinetic energy and other physically 

measurable properties internal to the volume. When applying control volumes to 

thermodynamics, this flow influences the internal energy of the volume and other 

properties of the fluid's physical state. Heat and work are also accounted for when they 

are found to cross the control surface.  

AdVd
tdt

dN

cscv  



   

 

N: the total amount of some property (mass, energy or momentum), β the amount of this 

property per unit mass, 𝛽 =
𝑁

𝑚𝑎𝑠𝑠
.   

 

1- CONSERVATION OF MASS (CONTINUITY EQUATION) 

𝛽 =
𝑚

𝑚
= 1,

𝑑𝑁

𝑑𝑡
=

𝑑𝑚

𝑑𝑡
= 0 (𝑓𝑜𝑟 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒)  

0 = ∫ 𝜌𝑉𝑑𝐴 = 
𝑐𝑠

∫ 𝜌1𝑉1𝑑𝐴1 + 
𝑖𝑛

∫ 𝜌2𝑉2𝑑𝐴2𝑜𝑢𝑡
  

 

0 = −𝜌1𝑉1𝐴1 + 𝜌2𝑉2𝐴2  

𝝆𝟏𝑽𝟏𝑨𝟏 = 𝝆𝟐𝑽𝟐𝑨𝟐   or   𝒎𝟏̇ = 𝒎𝟐̇   (Continuity equation). 

For incompressible flow, ρ1 = ρ2, hence, 

𝑽𝟏𝑨𝟏 = 𝑽𝟐𝑨𝟐   or  𝑸𝟏 = 𝑸𝟐 
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Example: A 10 kg/s  of water flows through a main pipe. The pipe branches 

to two pipes, 10 cm-diameter and 20 cm diameter. Find the mass flow rate 

and velocity at each branch if you know that the water velocity in the 10 cm 

branch is 0.5 m/s 
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Notes: 

The appearing V in the equations above is the mean velocity Vmean 

 For ideal fluid in pipe, Q = AVmean 

 For real fluid in pipe, 𝑄 = 𝐴𝑉𝑚𝑒𝑎𝑛 = ∫ 𝑉(𝑟)𝑑𝐴
𝑟𝑜

0
 

∴ 𝑉𝑚𝑒𝑎𝑛 =
𝑄

𝐴
=

∫ 𝑉(𝑟)𝑑𝐴
𝑟𝑜

0

𝜋 𝑟𝑜
2   

H.W: Determine the mean and maximum velocities for a fluid flow inside pipe according 

to the velocity profile: 𝑉 = (1 − (
𝑟

𝑟𝑜
))

2

 

 

 

2- CONSERVATION OF ENERGY 

Applying Newton’s 2
nd

 law along S-direction: 

ma = ∑ Fs 

(Assuming steady, incompressible, nun-

viscous) 

 

𝜌𝑑𝐴𝑑𝑆
𝑑𝑉

𝑑𝑡
= 𝑝𝑑𝐴 − (𝑃 +

𝜕𝑃

𝜕𝑆
𝑑𝑆) 𝑑𝐴 − 𝛾𝑑𝐴𝑑𝑆 𝑐𝑜𝑠𝜃 

 
𝑑𝑉

𝑑𝑡
= −

1

𝜌

𝜕𝑃

𝜕𝑆
− 𝑔

𝑑𝑍

𝑑𝑆
                                           (1)  

𝑑𝑉 =
𝜕𝑉

𝜕𝑡
𝑑𝑡 +

𝜕𝑉

𝜕𝑆
𝑑𝑆    

𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑆

𝑑𝑆

𝑑𝑡
    

𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑆
𝑉                                (2)  
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Equ (1) = Equ. (2)   → −
1

𝜌

𝜕𝑃

𝜕𝑆
− 𝑔

𝑑𝑍

𝑑𝑆
=

𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑆
𝑉  

For steady state, 
𝜕𝑉

𝜕𝑡
= 0 

𝑉
𝑑𝑉

𝑑𝑆
= −

1

𝜌

𝑑𝑃

𝑑𝑆
− 𝑔

𝑑𝑍

𝑑𝑆
                    (3)   Euler’s Equation  

Integrating equ (3) along S and assuming incompressible flow: 

∫ 𝑉
𝑑𝑉

𝑑𝑆
+ ∫

1

𝜌

𝑑𝑃

𝑑𝑆
+ ∫ 𝑔

𝑑𝑍

𝑑𝑆
= 0 

𝑉2

2
+

𝑃

𝜌
+ 𝑔𝑧 = 𝑐𝑜𝑛𝑠𝑡.                                (4)  

V
2
/2 : (J/kg) is the kinetic energy 

P/ρ : (J/kg) is the flow energy 

gz (J/kg) is the potential energy 

Note that, equation (4) can be written in other forms, by dividing 

it by g or multiplying it by ρ. 

𝑉2

2𝑔
+

𝑃

𝜌𝑔
+ 𝑧 = 𝑐𝑜𝑛𝑠𝑡   (Bernoulli equation) 

V
2
/2g (m): velocity head (m) 

P/ρg  (m): pressure head 

Z (m): potential head 

Total energy is always constant  

1

2
𝜌𝑉2 + 𝑃 + 𝛾𝑧 = 𝑐𝑜𝑛𝑠𝑡    
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1

2
𝜌𝑉2 (Pa): dynamic pressure 

P (Pa): static pressure 

γz (Pa): pressure due to elevation  

 

Definitions: 

Total pressure: is the summation of static, dynamic, elevation 

pressures, Pt = P + ½ ρV
2
 + gz 

Piezometric pressure:  is the summation of static and elevation 

pressure, Pz = P + gz 

 

 

 

 

 

 

  

Measurement of static and total pressures 
Pitot Tube 

H 
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H.W: For the tube shown in figure, derive a relation for the velocity of air at 

point A.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H 

A B 
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Ex: The system shown in figure discharges gasoline (ρ = 680 kg/m
3
) to 

atmosphere at a rate of 12 kg/s. Calculate the pressure P1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: Derive the flow rate relation through venturi meter for air. Then 

determine the manometer reading h, where S = 0.8 
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Applications of Bernoulli Equation 

 

1- Pump system 

𝑉1
2

2𝑔
+

𝑃1

𝜌𝑔
+ 𝑧1 + ℎ𝑝 =

𝑉2
2

2𝑔
+

𝑃2

𝜌𝑔
+ 𝑧2  

 

hp: is the pressure head generated by the pump (m) 

the pump efficiency is given by: 

𝜂
𝑝=

𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟

𝑖𝑛𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟
=

𝛾𝑄ℎ𝑝

𝑊𝑝

  

2- Turbine system 

𝑉1
2

2𝑔
+

𝑃1

𝜌𝑔
+ 𝑧1 − ℎ𝑡 =

𝑉2
2

2𝑔
+

𝑃2

𝜌𝑔
+ 𝑧2  

ht: is the pressure head supplied to the turbine (m) 
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Example: Water is pumped at a rate of 180 m
3
/hr to the upper reservoir as 

shown. Calculate the power required to drive the pump. Take pump 

efficiency as 70%  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.15 m 

46 m 

P=150 kPa 
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3- MOMENTUM CONSERVATION 

AdVd
tdt

dN

cscv  



 

 

N=mV (momentum) 

𝑑(𝑚𝑉)

𝑑𝑡
=

𝜕

𝜕𝑡
∫

𝑚𝑉

𝑚
𝜌𝑑∀

𝐶𝑉
+ ∫

𝑚𝑉

𝑚
𝜌𝑉. 𝑑𝐴

𝐶𝑆
  

For steady state 

𝑚
𝑑𝑉

𝑑𝑡
= 0 + ∫ 𝑉𝜌𝑉. 𝑑𝐴

𝐶𝑆
  

∴ 𝑚𝑎 = ∑ 𝐹 = ∫ 𝑉𝑜𝑑𝑚𝑜̇𝑜𝑢𝑡
− ∫ 𝑉𝑖𝑑𝑚𝑖̇𝑖𝑛

  

Or  

 

∑ 𝐹 = 𝑚𝑜̇ 𝑉𝑜 − 𝑚𝑖̇ 𝑉𝑖  

𝐹 {

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒  𝑓𝑜𝑟𝑐𝑒 (𝑃 ∗ 𝐴)
𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒

𝑊𝑖𝑒𝑔ℎ𝑡 (𝑠𝑜𝑚𝑒𝑡𝑖𝑚𝑒𝑠)
 

 

Example: Find the horizontal force of the water on the horizontal bend 

shown in figure. 
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APPLICATION OF MOMENTUM EQUATION ON MOVING VANES 

 

Bernoilli between 1 and 2, 

V1 = V2 

V1= Vj-Vb 

where: 

 

V1: relative velocity  (velocity of jet relative to the vane) 

Vj : Jet or (Nozzle) velocity 

Vb: vane (or blade) velocity 

In vane application, the mass flow rate is calculated as follow: 

 

1- 𝑚̇ =  𝜌𝐴𝑗𝑉𝑗   For multi vanes (turbine) 

2- 𝑚̇ =  𝜌𝐴𝑗(𝑉𝑗 − 𝑉𝑏) for single vane 

  

Fx 

Vb 

Vj 

1 

2 

θ 



Chapter 7- Introduction to Fluid Motion 
 

72 
 

Example: The vane shown in figure moves to the right at 30 m/s. the jet 

velocity is 80 m/s. determine (a) the force components needed to support the 

vane (b) the absolute velocity at the exit, and (c) the power generated by the 

vane. 

 

 

Vj =80 m/s 1 

2 

θ =30o  

Vj =30 m/s 

Rx  

Ry  


